
 International Journal of

Geo-Information

Technical Note

Development of a QGIS Plugin to Obtain Parameters
and Elements of Plantation Trees and Vineyards with
Aerial Photographs

Lia Duarte 1,2,* ID , Pedro Silva 1 and Ana Cláudia Teodoro 1,2 ID

1 Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto,
Porto 4169-007, Portugal; up201007485@fc.up.pt (P.S.); amteodor@fc.up.pt (A.C.T.)

2 Earth Sciences Institute (ICT), Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
* Correspondence: liaduarte@fc.up.pt; Tel.: +351-220-402-477

Received: 4 January 2018; Accepted: 12 March 2018; Published: 14 March 2018

Abstract: Unmanned Aerial Vehicle (UAV) imagery allows for a new way of obtaining geographic
information. In this work, a Geographical Information System (GIS) open source application was
developed in QGIS software that estimates several parameters and metrics on tree crown through image
analysis techniques (image segmentation and image classification) and fractal analysis. The metrics that
have been estimated were: area, perimeter, number of trees, distance between trees, and a missing tree
check. This methodology was tested on three different plantations: olive, eucalyptus, and vineyard.
The application developed is free, open source and takes advantage of QGIS integration with external
software. Several tools available from Orfeo Toolbox and Geographic Resources Analysis Support
System (GRASS) GIS were employed to generate a classified raster image which allows calculating
the metrics referred before. The application was developed in the Python 2.7 language. Also, some
functions, modules, and classes from the QGIS Application Programming Interface (API) and PyQt4
API were used. This new plugin is a valuable tool, which allowed for automatizing several parameters
and metrics on tree crown using GIS analysis tools, while considering data acquired by UAV.

Keywords: unmanned aerial vehicle; multispectral imagery; NDVI imagery; QGIS; python; plugin;
imagery segmentation; imagery classification; fractal analysis; plantations; orthophotos

1. Introduction

Remote sensing techniques provide useful information for agricultural management enhancing
the reliable automation of mapping procedures [1]. In recent years, Unmanned Aerial Vehicle (UAV)
imagery has allowed a new way of getting geographic information from remote sensing data [2]. UAV
technology provides several advantages compared to a manned aircraft such as: (i) significantly lower
qualification requirements for UAV pilots; (ii) allows for mapping small areas, resulting in very high
spatial resolution (VHR) images, which are ideal for detecting small objects; (iii) low cost acquisition;
and, (iv) it can couple different sensors [2]. UAVs are increasingly used in different contexts and in
several research areas, such in cartography, environmental studies, cultural heritage, civil engineering,
forestry, and agriculture/precision agriculture [3–8]. Therefore, when considering UAV imagery, it is
possible to acquire information more efficiently and inexpensively [9]. UAV imagery have been used
to estimate metrics from trees in several crops or farms, which can be of interest of farmers in order to
obtain a better planning of the irrigation process, helping in the forecast of the production date and
climate change effects as a consequence of deforestation and degradation of forests, which leads to
global warming, precision forestry, forest management planning, and biomass estimation [2,10–13].
Most of the work conducted with UAV data has been related with forest areas [11,12,14–19]. However,
in the field of agriculture crops, it is relevant to study the geometric characterization of trees and
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plantations. This is a complex task, being particularly important to understand the tree growth and
productivity [1,9,13,20–22]. In the field of precision agriculture, several image processing methods for
automatic detection and delineation of individual trees were already implemented [1]. The information
regarding tree crown areas of a specific crop is the key in the study of ecological value and ratio of
the occupied area by that crop [9,15,23]. Traditionally, tree counting has been performed manually
based on field information and statistical data, being an expensive process, time consuming, and a
tedious task subject to several errors [13,14,22]. Satellite, manned aircraft, or UAV imagery can be
used to obtain these data. Therefore, the implementation of automatic processes is crucial to extract
information and provide forest or crops inventories from remote sensing data [2,13,22].

Several studies have been developed with different techniques to estimate the tree crown
delineation, tree counting, and tree characterization from remote sensing imagery. Deng et al. [23]
proposed an artificial intelligence algorithm based on seeded based region growth method to extract
tree crown from Quickbird satellite images. In this work, after the segmentation process, a condition
regarding the Normalized Difference Vegetation Index (NDVI > 0.38) was considered. Santoro et al. [1]
proposed an algorithm based on an asymmetric weighted kernel optimized for tree counting using
GeoEye-1 satellite imagery. Park et al. [10] developed a tree isolation algorithm based on aerial imagery
for precise tree detection and crown delineation. Through UAV imagery acquired from a Hexacoptor,
Bazi et al. [2] extracted a set of candidate key points using Scale Invariant Feature Transform (SIFT)
analyzed with the Extreme Learning Machine (ELM), which is a kernel-based classification method.
Processing operations using mathematical morphology were used to distinguish palm trees from
other type of vegetation. Kang et al. [9] proposed an identification method for tree crown areas from
imagery captured by UAV. The methodology was based on mathematical morphological filtering,
unsupervised segmentation based on J-value SEGmentation (JSEG), local spatial statistics and Iterative
Self-Organizing Data Analysis Technique Algorithm (ISODATA). Panagiotidis et al. [24] used the
Structure from motion (Sfm) approach to generate a point cloud that was used to calculate a Digital
Surface Model (DSM) and an orthomosaic. This information was used as input data for tree crown
delineation using local maxima filtering (for tree heights) and Inverse Watershed Segmentation
(IWS) for tree crown detection. Thiel and Schmullius [17] also used Sfm for generating remote
sensing products from UAV imagery and LASTools software package to generate the point cloud.
The tree detection was based on pit-free Canopy Height Models. Hassaan et al. [11] created a script
in Matlab to remove barrel distortions from UAV images, k-means clustering in the segmentation
stage, and texture analysis. Finally, to count the trees a circle fitting approximation technique was used.
Nevalainen et al. [12] investigated the performance of UAV and hyperspectral imagery in individual
tree detection and tree species classification in forests computing the spectral features using Matlab.
Chianucci et al. [25] used Red-Green-Blue (RGB) UAV images to segment tree canopies (tree/non tree
mask) based on visible-vegetation indices and colour space conversion and conclude that the true
colour UAV images can be effectively used to obtain meaningful estimations of forest crown attributes.

Object-Based Image Analysis (OBIA) has proven to be a valuable approach to image segmentation
and classification when considering the form, color, and textures of the pixels, minimizing the boundary
problem [22,26–29]. OBIA groups the local homogeneous pixels, i.e., it allows for mapping the VHR
imagery into meaningful objects [27].

In the referred studies proprietary software were considered. However, there are several open
source software available such as Spring, Orfeo ToolBox (OTB)/Monteverdi, GRASS and QGIS which
are complemented with processing image algorithms [28]. The open source Geographical Information
System (GIS) software, such as QGIS, presented some advantage since it integrates algorithms from
OTB and GRASS through Processing Toolbox framework [30–33]. The UAV imagery can be considered
as an input in GIS applications as it provides the tools that are required to correctly manipulate,
analyze, and incorporate geographic information. In fact, the open source concept implies the
creation/development of new applications. For instance, Grippa et al. [34] presented a semi-automated
processing chain, developed in Python language, for object-based land-cover and land-use classification
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using GRASS GIS and R open source software. Also, Duarte et al. [35] developed a GIS open source
application for image processing automatizing the photogrammetric procedures, such as computing
tie points between pairs of images, computing relative orientations based on calibration models,
sparsing three-dimensional (3D) models, generating orthomosaics, point cloud, DSM, and shaded
reliefs, through the integration of MicMac open source software in QGIS.

The objective of this work was the creation of a GIS open source application/plugin—Tree
Crown—that estimates several parameters and metrics on tree crown through image analysis
techniques (image segmentation and classification) and fractal analysis.

The innovation of this work is highlighted by: (i) the literature analysis—there is not a GIS
application available that provides specifically the metrics regarding tree crown; (ii) the developing
and implementation of the methodology in a new plugin, so the users that are not familiar with the
algorithms presents in QGIS software can, easily, estimate the parameters with a simple tool; (iii) the
GIS application was developed in Python language, which is a free programming language, so that it
allows for the modification or adaptation by any user according to specific rules; (iv) we respect the
freedoms of open source software using QGIS software which provide the possibility of incorporating
algorithms and functions from others software; and, (v) the fractal analysis was only feasible with an
automatic implementation.

2. Study case and Data Acquisition

2.1. Study Case

Three study cases were considered: an orthomosaic from an olive crop acquired with an UAV
imagery with 2.75 ha (Mirandela, Bragança, Portugal in August 2016, 41◦37′18.895′ ′ N; 7◦10′20.182′ ′ W),
another from a eucalypt crop with 0.77 ha (Chamusca, Santarém, Portugal in December 2016,
39◦20′39.686′ ′ N; 8◦23′28.989′ ′ W) and the last one considered was from a vineyard crop with 1.57 ha
(Corvo, Fafe, Portugal in May 2017, 41◦31′03.124′ ′ N; 8◦13′00.997′ ′ W). In Figure 1 are presented the
three orthomosaics that are considered in this work.
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Figure 1. Study cases: (a) olive crop; (b) eucalyptus crop; and, (c) vineyard crop. 
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The image corresponding to each study case was obtained with a rotary-wing UAV (3DR Solo) 
with a MicaSense RedEdge camera which is composed by five bands: Red, Green, Blue, Red edge, and 
Near-Infrared (NIR). The coordinate reference system adopted was Universal Transverse Mercator 
(UTM) Zone 29 North—World Geodetic System 1984 (WGS84; EPSG:32629) for olive crop image 
(with a spatial resolution of 2.8 cm), and European Terrestrial Reference System 1989 (ETRS89) 
Portugal Transverse Mercator 2006 (PTTM06; EPSG:3763) for eucalypt (with a spatial resolution of 
3.6 cm) and vineyard images (with a spatial resolution of 5.2 cm). It was performed one single 
cloud-free flight to each study case. The flight height to olive crop was 50 m, for eucalypt was 120 m 
and for vineyard was 80 m. After, for each image, the NDVI was computed using Red and NIR 
bands [36].  

Figure 1. Study cases: (a) olive crop; (b) eucalyptus crop; and, (c) vineyard crop.

2.2. Data Acquisition

The image corresponding to each study case was obtained with a rotary-wing UAV (3DR Solo)
with a MicaSense RedEdge camera which is composed by five bands: Red, Green, Blue, Red edge,
and Near-Infrared (NIR). The coordinate reference system adopted was Universal Transverse Mercator
(UTM) Zone 29 North—World Geodetic System 1984 (WGS84; EPSG:32629) for olive crop image (with
a spatial resolution of 2.8 cm), and European Terrestrial Reference System 1989 (ETRS89) Portugal
Transverse Mercator 2006 (PTTM06; EPSG:3763) for eucalypt (with a spatial resolution of 3.6 cm) and
vineyard images (with a spatial resolution of 5.2 cm). It was performed one single cloud-free flight to
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each study case. The flight height to olive crop was 50 m, for eucalypt was 120 m and for vineyard was
80 m. After, for each image, the NDVI was computed using Red and NIR bands [36].

3. Methodology

3.1. GIS Software, Python Libraries and Tree Crown Application

The application was created and implemented in QGIS software (version 2.18 Las Palmas), an open
source software, which consider the Stallman four freedoms, namely the possibility to study and
modify the code, to distribute the program with different modified versions [32,33]. QGIS allows for
the development of new plugins in Python 2.7 programming language [37] and provide online support
through forums, tutorials, and documentation [33]. It allows for vector and raster files manipulation,
visualization, analysis, and acquisition. To create a new plugin, different libraries and/or Application
Programming Interface (API) are commonly used, such as Geographic Resources Analysis Support
System (GRASS), QGIS API, and PyQt4 API [30,38,39]. Also, from QGIS 2.0, a Processing Toolbox,
a framework containing several algorithms of standalone GIS software, such as GRASS 7.2.2 and
OTB 5.0.0, was integrated [31]. The OTB software is an open source project for remote sensing and
it is composed by several algorithms, which allows for processing high resolution, multispectral,
and RADAR images, and includes several image processing procedures, such as ortho-rectification,
pan sharpening, classification algorithms, image manipulation, and segmentation [31].

This plugin was concretized as a button in QGIS main menu. The plugin graphic interface was
developed through Qt Designer package where it is possible to create and personalize the widgets such
as combo boxes, push buttons, labels, among others [40].

The main graphic interface is a window composed by four fields, two inputs and two outputs
(Figure 2). This fields were defined as push buttons and line edits. The functions related to each push
button are, respectively, inputfile, inputfile2, output, and output2. The main procedure was implemented
in the function run. In this function the image details, such as extension, number of bands and
multispectral bands, were accessed using functions from QgsRasterLayer() class [38]. In order to access
to Processing Toolbox algorithms, the Processing module was imported and the function runAlgorithm()
was used. The experimental procedure performed allowed to select the most accurate methodology
to be implemented in the plugin. The methodology implementation is described in the Section 3.2.1,
Section 3.2.2, and Section 3.2.3.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 20 

 

3. Methodology 

3.1. GIS Software, Python Libraries and Tree Crown Application 

The application was created and implemented in QGIS software (version 2.18 Las Palmas), an 
open source software, which consider the Stallman four freedoms, namely the possibility to study 
and modify the code, to distribute the program with different modified versions [32,33]. QGIS 
allows for the development of new plugins in Python 2.7 programming language [37] and provide 
online support through forums, tutorials, and documentation [33]. It allows for vector and raster 
files manipulation, visualization, analysis, and acquisition. To create a new plugin, different libraries 
and/or Application Programming Interface (API) are commonly used, such as Geographic Resources 
Analysis Support System (GRASS), QGIS API, and PyQt4 API [30,38,39]. Also, from QGIS 2.0, a 
Processing Toolbox, a framework containing several algorithms of standalone GIS software, such as 
GRASS 7.2.2 and OTB 5.0.0, was integrated [31]. The OTB software is an open source project for 
remote sensing and it is composed by several algorithms, which allows for processing high 
resolution, multispectral, and RADAR images, and includes several image processing procedures, 
such as ortho-rectification, pan sharpening, classification algorithms, image manipulation, and 
segmentation [31]. 

This plugin was concretized as a button in QGIS main menu. The plugin graphic interface was 
developed through Qt Designer package where it is possible to create and personalize the widgets 
such as combo boxes, push buttons, labels, among others [40]. 

The main graphic interface is a window composed by four fields, two inputs and two outputs 
(Figure 2). This fields were defined as push buttons and line edits. The functions related to each push 
button are, respectively, inputfile, inputfile2, output, and output2. The main procedure was 
implemented in the function run. In this function the image details, such as extension, number of 
bands and multispectral bands, were accessed using functions from QgsRasterLayer() class [38]. In 
order to access to Processing Toolbox algorithms, the Processing module was imported and the 
function runAlgorithm() was used. The experimental procedure performed allowed to select the most 
accurate methodology to be implemented in the plugin. The methodology implementation is 
described in the Sections 3.2.1, 3.2.2, and 3.2.3. 

 
Figure 2. Plugin graphic interface. 

3.2. Procedures Tested 

To define the methodology to be implemented in the plugin, different tools were tested and 
compared. In the end, the more accurate methodology was chosen. Based on the literature consulted 
and in the tools existing in QGIS, the OBIA classification approach was chosen. The Sections 3.2.1 
and 3.2.2 describe the tools that are available in QGIS to perform OBIA segmentation and 
classification. 
  

Figure 2. Plugin graphic interface.

3.2. Procedures Tested

To define the methodology to be implemented in the plugin, different tools were tested and
compared. In the end, the more accurate methodology was chosen. Based on the literature consulted
and in the tools existing in QGIS, the OBIA classification approach was chosen. The Sections 3.2.1
and 3.2.2 describe the tools that are available in QGIS to perform OBIA segmentation and classification.
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3.2.1. OBIA Segmentation

For the segmentation process, two algorithms from GRASS and OTB, respectively, i.segment and
Watershed segmentation were tested. The first approach performs the segmentation based in the region
growing algorithm and the second uses the watershed algorithm [41]. The i.segment sequentially
examines all of the segments in the raster file and calculates a similarity measure between the current
segment and each of its neighbors, according to a given distance [30]. This algorithm was computed
considering two parameters: the thresholding, which represents the similarity between 0 and 1;
and, the object minimum size (minsize), which corresponds to the minimum size value that each
object can have. In thresholding, a higher value aggregates objects with similar properties. Through
a neighbor relation, the pixels that presented similar spectral and spatial characteristics to the seed
points were aggregated, dividing the image into objects.

When considering the region growing method, different values of thresholding and minsize were
tested in order to optimize the procedure. The thresholding was tested with values ranging from 0.05
to 0.95 (unitless), in which a loop cycle was created, and where the first image created (with 0.05
of thresholding) contained the seed points and the following images were obtained recursively from
the first one; was considered an increment in thresholding value of 0.05 [41]. Also, the minsize value
was randomly tested when considering the values 10, 100, and 200. In this segmentation process,
the tool accepts the multispectral image with separated bands and with non-separated bands as inputs.
The other parameters were defined by default.

The Watershed segmentation algorithm from OTB was tested with the default values that were
provided by QGIS [33].

In Section 4.1.1, the results that were obtained with the two algorithms tested will be presented.
The more robust algorithm implemented was the i.segment. In the Tree Crown application, to split
the multispectral image by bands, the split image, algorithm from OTB, was employed. The first seed
image was processed with 0.05 of thresholding. Then, a for loop was created to use i.segment algorithm
with an increment of 0.05 and the thresholding values varied between 0.1 and 0.65. The final image was
obtained considered a thresholding of 0.65.

3.2.2. OBIA Classification

In image classification, two algorithms, from OTB, were tested: supervised classification using the
Image classification algorithm, through the Support Vector Machine (SVM) classifier, and unsupervised
classification through the Unsupervised kmeans image classification algorithm [42,43].

In the supervised classification, the mean and standard deviation values of each band were
obtained from a XML file generated from Compute images second order statistics algorithm from OTB.
The next step consisted in a shapefile creation with two training areas: the tree crown class (assigning as
1) and remaining objects (assigning as 0). The SVM method was used through TrainImagesClassifier (svm),
algorithm from OTB, to perform classifier training from pairs of images [30]. Finally, the classification
was performed using the Image Classification algorithm with the multispectral image and the NDVI
image as inputs, and the XML file containing the mean and standard deviation values, the segmented
image generated before and the SVM resulting file [42]. The classification accuracy was obtained
through r.kappa algorithm from GRASS GIS 7, which compute the error matrix of the classification
result by crossing the classified map layer with respect to reference map layer (training areas). The error
matrix and the kappa value were returned.

In the unsupervised classification (k-means algorithm), the clusters (center points of each class)
are defined and the pixels are classified based on their distance to the cluster. When considering
that the NIR or RED bands from low-cost UAV sensors are usually less radiometrically robust than
RGB bands, the multispectral image, the NDVI image, and the RGB true colour combination were
used as inputs into the classification process. The training areas were defined with the Training set
size parameter, assuming the value of 100,000 pixels [44]. The validation mask corresponded to the
segmented image and the other parameters were defined by default.
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The classification algorithm chosen was the unsupervised classification algorithm implemented
through the Unsupervised kmeans image classification from OTB. In this algorithm the input can be the
RGB combination, the multispectral or the NDVI image, and the segmented image as validation mask.
The training set size parameter was obtained when multiplying the total number of pixels by 0.00705 to
obtain the value 100,000 and the remaining parameters were defined by default. Then, the maximum
value of the resulted image was extracted and associated to the tree crown using functions from
QgsRasterLayer(). To distinguish the tree crown from the other objects, the Rastercalculator, algorithm
from GDAL, was used, assigning the value 1 to tree crown. The image obtained was converted to
shapefile through Polygonize algorithm, from GDAL, which was interpreted using functions from
QgsVectorLayer() class. To restrict the objects only to tree crown, were not considered: (i) objects with
an area lower than 1 m2 or higher than 50 m2; (ii) elements with the class value different from 1;
and, (iii) objects with the ratio between height and width of the polygon bounding box, which is
considered as a regular polygon where the extension values (x minimum, x maximum, y minimum,
and y maximum) correspond to the extension of an irregular polygon. In the case of tree crown,
it is expected a quadrangular polygon, so this ratio should be closest to 1. However, in this plugin,
a tolerance of 0.55 was considered. The ratio was obtained implementing a for loop to extract the area,
height and width. In the end, the features, which satisfy at least one of the above criteria, were excluded
from the shapefile.

3.2.3. Fractal Analysis

The fractal analysis was applied in order to obtain the tree crown parameters and metrics in
shapefile format. To perform this, the resulting image from OBIA need to be converted to binary
image, where 1 corresponded to the tree crown and 0 to the remaining objects. The resulted image was
then converted to shapefile through Polygonize, algorithm from Geospatial Data Abstraction Library
(GDAL) [45]. The area was estimated, and the tree crown objects were identified when considering an
area between 1 m2 and 50 m2.

In the GIS application, the fractal analysis was generated and included in a text file composed
by the following metrics: area, perimeter, centroid of each tree, total number of trees, total area of
tree crown, and total number of missing trees. The information was saved in table format with the
following headers: Id, Area, Perimeter, x (centroid) and y (centroid).

The code that was implemented used the write() function to insert each parameter. Through
functions from QgsVectorLayer() class, the Id attribute was added to the shapefile attribute table. Two
for loops were created to count the number of trees, sum the total area of tree crown, and to extract the
trees metrics. To obtain the distance between the trees in each row, it was necessary to estimate the
rhumb value. Because the trees positions are not regular, the rhumb between each tree was calculated
using the azimuth function from QgsPoint() class. It was considered the positive rhumb. This value
was calculated considered all of the centroids. From the list obtained, the mode value of the rhumb
was extracted. Then, two for loops were defined to calculate the rhumb of one point related with the
other points to find the distances in the existent rows, with a tolerance of 10. The minimum distance,
which corresponds to the distance between two consecutive points in the same row, was extracted and
listed. These values allowed for detecting the missing trees. For that, the mean distance was obtained
and, if a distance value was higher than the mean value, with a specific tolerance of 1.5, a missing tree
was detected. Finally, the total number of trees, the total area, the mean distance between trees and the
number of missing trees was recorded in the text file.
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4. Results and Discussion

4.1. Experimental Procedure

In order to define the methods to be implemented in the new plugin, some tests were performed
in the segmentation and classification stages when considering the olive crop. This (Section 4) section
presents the results obtained in these tests.

4.1.1. OBIA Segmentation

Figure 3 presents the segmentation result obtained with i.segment algorithm (Figure 3a) and
considered the Watershed algorithm (Figure 3b), both performed when considering the default values.
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Several tests were computed using different values of thresholding and minsize. Table 1 presents
the results obtained regarding the tests that were performed using different values of thresholding (0.65
or 0.95) and minsize (10, 100, or 200) for segmentation process and different inputs (multispectral image,
RGB image, or NDVI) for classification process with i.segment algorithm. Also, the algorithm can be
applied with separated bands or joined bands. So, the tests presented considered these two cases.

Table 1 presents the results of several tests performed considered the multispectral image, NDVI
image and RGB true colour image as inputs in unsupervised classification. For this study case, the results
obtained considering the multispectral image and the RGB image presented worst accuracy when
compared with NDVI image (as input). For this reason, the NDVI image was used as input.

The segmentation accuracy was evaluated based on “Goodness for fit” statistical model, as provided
by i.segment algorithm, which allows for describing how well it fits a set of observations, summarizing
the discrepancy between observed and expected values. In the GRASS library (i.segment algorithm),
this parameter is based on the distance of the pixel to the object that it belongs to. A value of 1 means
identical values, a perfect fit, and a value of 0 means maximum possible distance, worst possible fit.
Given the lack of field data to validate the results obtained, this model was used. In order to estimate the
percentage of pixels with specific values, r.report (algorithm from GRASS) was computed. The model was
applied to the segmentation tests that were performed in Table 1. Based on the report that was returned it
was concluded that: in case (a) all of the image pixels were above 0.96 and 47.33% of them were above
0.99; in case (b) all of the pixels were above 0.94 and 69.82% of the pixels were above 0.99; in the case (c) all
the pixels were above 0.95 and 44.85% of them were above 0.99; in case (d) all the pixels were above 0.93
and 73.79% of them were above 0.99; in case (e) all the pixels were above 0.95 and 44.85% were; in case
(f) all the pixels were above 0.97 and 64.94% of them were above 0.99. The values obtained proved that
the segmentation using i.segment algorithm was satisfactory. Figure 4 presents an example of “Goodness
for fit” map.
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Figure 4. “Goodness for fit” map considering a thresholding of 0.65 and a minsize of 100,
with separated bands.

The i.segment presented consistent results (Figure 3a), whereas the results that were obtained
with the OTB algorithm were not satisfactory (Figure 3b). For this reason, the i.segment algorithm was
chosen to be implemented in the plugin. The tests performed with different thresholding and minsize
values allowed to define the more adequate methodology (Table 1). The thresholding parameter was
defined as 0.65 as it presented a significant agglomeration of the pixels in the objects with smaller
values. The minsize value was defined as 100 pixels as the results obtained were better with smaller
values and very similar with higher values (Table 1).
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Table 1. Tests performed for segmentation and classification processes considering different values of thresholding and minsize for i.segment algorithm, in the
segmentation process and considering different inputs (multispectral image, Red-Green-Blue (RGB) image, or Normalized Difference Vegetation Index (NDVI)) in the
classification process.

Segmentation
Unsupervised Classification with

Segmented Image and Multispectral
Image as Inputs

Unsupervised Classification with
Segmented Image and NDVI Image as

Inputs

Unsupervised Classification with
Segmented Image and RGB Image as

Inputs
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Table 1. Cont.

Segmentation
Unsupervised Classification with

Segmented Image and Multispectral
Image as Inputs

Unsupervised Classification with
Segmented Image and NDVI Image as

Inputs

Unsupervised Classification with
Segmented Image and RGB Image as

Inputs
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Table 1. Cont.

Segmentation
Unsupervised Classification with

Segmented Image and Multispectral
Image as Inputs
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Inputs
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Inputs
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4.1.2. OBIA Classification

In this process, both classification, supervised and unsupervised, obtained similar results,
as presented in Figure 5.
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classification because it is a procedure more objective when compared to the supervised 
classification, given the fact that the user doesn’t need to define the training areas to classify. 

Figure 5. (a) Supervised classification result; and, (b) Unsupervised classification result, for olive crop.

The input defined in the supervised classification (Figure 5a) was the multispectral image,
because the NDVI image did not presented valid results. Regarding the classification accuracy,
in the supervised classification was obtained an overall accuracy of 92.84% and a kappa value of 0.71.
While in the unsupervised classification the NDVI image presented results more robust (Figure 5b).
Both classifications used the segmented image with separated bands as input. As both provided very
similar results, the algorithm that was implemented in the plugin was the unsupervised classification
because it is a procedure more objective when compared to the supervised classification, given the fact
that the user doesn’t need to define the training areas to classify.

The final result was obtained from a segmentation through i.segment algorithm using the
multispectral image with separated bands, followed by an unsupervised classification through
Unsupervised kmeans image classification when considering the NDVI image as input (Figure 5a).
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4.1.3. Fractal Analysis

The classified image was then converted to binary image using Raster Calculator, resulting in an
image with values 1 to tree crown and 0 to the remaining objects. After, this image was converted to
shapefile (Figure 6).
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Figure 6. Shapefile with tree crown well identified.

In the shapefile showed in Figure 6, some objects were not correctly classified. Based on in situ
knowledge, objects with an area different from (1–50) m2 or objects with an atypical shape for the
general tree crown should be removed. The remaining objects are considered as tree crown (Figure 5b).

4.2. GIS Open Source Application

To test the plugin created, the study case presented in the experimental procedure was considered.
The result obtained was the shapefile with the tree crown and the text file with the metrics estimated.
Figure 7a,b present the resulting shapefile from plugin and the shapefile obtained manually, respectively.
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The code implemented allowed for removing the objects with a bounding box higher than the
ratio defined. The metrics estimated presented a total count of 178 trees and a total area of 1401.3 m2.
The mean distance between the trees was 7.8 m and it were detected 23 missing trees.

In the plugin testing phase some limitations were founded. For instance, two trees were wrongly
removed and some of them were not totally separated. The proximity between them was not detected
by the algorithm (Figure 8).
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Also, some vegetation species with similar spectral characteristics with olives were wrongly
identified as olive crop (Figure 9).
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Figure 9. Incorrect objects identification (other type of vegetation).

The detected number of missing trees seems to be higher than the expected. This fact can be
related with the roads that cross this area, so it was identified as a missing tree (Figure 10).
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Two different crops were also used to test the plugin, eucalyptus, and vineyards. In the case of
eucalyptus, the resulted shapefile was not satisfactory, because most of the trees were not recognized
and some shadows were identified as trees (Figure 11).
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Figure 11. Eucalyptus crop plugin result.

In this study case, some polygons were not completely separated, because the eucalyptus trees
are very close together. Also, the shade of the trees is different, so it was not possible to obtain a
homogeneous colour maybe due to the light conditions. In this test, 558 eucalyptuses were detected
and an area of 2632.1 m2 was estimated. The mean distance obtained was 14.9 m and 101 eucalyptuses
were not identified.

In vineyard crop study case, some species vegetation and other trees, different from vineyard,
were identified. In this case, 254 trees were identified and 886.3 m2 of area was obtained. The mean
distance was 13.3 m and 41 trees were missing (Figure 12).
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From the results obtained, testing the plugin with different plantations, some limitations were
founded. These limitations could be overcome with the use of DSM, which can be generated from
UAV imagery. Several studies proved that, with the DSM, it is possible to achieve a good performance
in the extraction of individual tree metrics [46]. The plantation background is relevant to understand
the accuracy of the results obtained with this plugin. As in olive crop some shrubs were wrongly
identified as olives (Figure 9). In these cases, the DSM could help into distinguish tree crowns from
the surrounding vegetation more reliably. In the future a new method should be implemented in this
plugin integrating the DSM in the that is methodology proposed.

4.3. Processing Time

In order to compare the performance of the plugin developed, the processing time of the
experimental tests were recorded (Table 2), for olive crop. These procedures were performed in
the same environment: same computer, same CPU (Intel®, Santa Clara, CA, USA, Core™ i7-5500U
CPU@ 2.40 GHz), same memory (8.00 GB) and same operating system (Windows 10 Home, Microsoft,
Seattle, WA, USA). The objective of this analysis was to evaluate the performance of the plugin created
comparing the processing time of it with the manual procedure.

Table 2. Processing time of manually procedure and plugin.

Procedure Tool Algorithm
Time (s)

Experimental
Procedure Plugin

OBIA segmentation

GRASS GIS 7 i.segment (default values) 1837

OTB Watershed segmentation 319

GRASS GIS 7 i.segment (thresholding 0.05 until 0.65) 2017

OBIA classification—supervised
classification

OTB Compute second order statistics 3
OTB TrainImageClassifier (svm) 14
OTB Image Classification 8

OBIA
classification—unsupervised

classification
OTB Unsupervised kmeans image classification 3

Fractal Analysis GDAL Raster Calculator 8
GDAL Polygonize 69

TOTAL (with unsupervised
classification)

Segmentation with i.segment (default values) 1917
2118Segmentation with Watershed algorithm 399

Segmentation with thresholding 2097

Several conclusions can be drawn when considering the results that are presented in Table 2.
The total processing time was calculated when considering three different segmentation methods.
The Watershed algorithm took 6′39′ ′. The segmentation with i.segment, defined with the default values,
took 31′57′ ′ and the segmentation with the thresholding takes 34′57′ ′. The plugin processing time
was also recorded and took 35′18′ ′. From the manual procedures, the algorithm implemented in the
plugin (with thresholding method) was the slowest method. However, the evaluation of the results
that were obtained in this work proved that the i.segment with thresholding were the most satisfactory
approach. The processing time was similar with the segmentation performed manually or with
the plugin using the i.segment with thresholding. Even though the manual processing took less 21′ ′

than the automatized processing implemented in the plugin, it must be considered that the manual
processing was performed step by step and the plugin ran all of the algorithms automatically in one
step. Furthermore, the fractal analysis including the estimation of the number of trees, the total area
of the tree crown, the centroid of a tree, the perimeter and the total number of missing trees were
implemented in the plugin automatizing this process. A method was defined where the missing
trees are automatically detected, which improved the plugin capabilities, as this process can be very
complex to perform without a specific script. When combining this with the high quality of the results
obtained, this methodology proved to be the best one and was chosen to be implemented in the plugin.
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The total processing time of the plugin for eucalyptus and vineyards resulted in 3 h 30′31′ ′ and 1 h
20′18′ ′, respectively. These results proved that the processing time depends on the crop used and the
image size.

5. Conclusions

The automatic trees detection using a UAV image is a complex process. Different types of objects
can be identified in the UAV images, so it is required a robust algorithm to detect the correct objects.
UAV technology combined with GIS software proved to be efficient in the detection of tree crown, as it
combines tools to visualize, manipulate, analyse and process geographic information data acquired by
UAVs. The open source GIS software, as QGIS, provides the possibility of developing new plugins in
order to automatize procedures and integrates several external algorithms, for instance, processing image
algorithms. This functionality allowed for developig/creating a new plugin with the implementation
of the more accurate methodology to obtain the parameters/metrics of tree crown. In this work, a new
plugin was created automatizing the process of obtaining the parameters/metrics of tree crown. Different
methodologies were tested and the more accurate was implemented in the plugin. To evaluate the
performance of the plugin, the time processing of the set of procedures implemented was compared
with the manual procedure. From the results that were obtained, it was concluded that the methodology
implemented in the segmentation stage using i.segment with thresholding method presented the most
satisfactory result in terms of processing time and accuracy. However, some limitations were founded in
the code implemented, which were related to the precise identification of trees of a specific crop. Therefore,
in the future, the plugin can be improved with a more efficient code and new methods. For instance,
it can be improved when considering: (i) the correctly overlap of the bands; (ii) to use hyperspectral
images instead of multispectral images, as the hyperspectral images presents continuous values allowing
for a better distinction between the objects; (iii) to provide morphological operations, such as erosion to
remove surrounding pixels and dilatation of the objects adding pixels to the surrounding areas; (iv) added
supervised classification algorithms; and, (v) incorporation of DSM in the methodology. This plugin was
created in the context of plantations, however the plugin presents a huge potential for other different
areas such in small-crop delineations (cabbage fields, strawberries plantations, among others) or even
non-environmental applications such as counting cars or buildings. The greater advantages of the
developed plugin are the possibility of estimating the parameters with a simple and intuitive tool,
not requiring the knowledge of the algorithms existent in QGIS and the possibility of the incorporation of
algorithms and functions from others software. The first version of this tool is presented in this paper.
The plugin is free, open source and available in http://www.fc.up.pt/pessoas/liaduarte/treecrown.rar.
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